Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Sci Rep ; 14(1): 7924, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575644

RESUMEN

Neonatal hypoxic-ischemic brain injury (HIBI) results in part from excess reactive oxygen species and iron-dependent lipid peroxidation (i.e. ferroptosis). The vitamin D precursor 7-dehydrocholesterol (7-DHC) may inhibit iron-dependent lipid peroxidation. Primary neurons underwent oxygen and glucose deprivation (OGD) injury and treatment with 7-DHC-elevating medications such as cariprazine (CAR) or vehicle. Postnatal day 9 mice underwent sham surgery or carotid artery ligation and hypoxia and received intraperitoneal CAR. In neurons, CAR administration resulted in significantly increased cell survival compared to vehicle controls, whether administered 48 h prior to or 30 min after OGD, and was associated with increased 7-DHC. In the mouse model, malondialdehyde and infarct area significantly increased after HIBI in the vehicle group, which were attenuated by post-treatment with CAR and were negatively correlated with tissue 7-DHC concentrations. Elevating 7-DHC concentrations with CAR was associated with improved cellular and tissue viability after hypoxic-ischemic injury, suggesting a novel therapeutic avenue.


Asunto(s)
Deshidrocolesteroles , Ferroptosis , Hipoxia-Isquemia Encefálica , Animales , Ratones , Animales Recién Nacidos , Encéfalo , Hipoxia/complicaciones , Oxígeno/uso terapéutico , Isquemia/complicaciones , Hierro/uso terapéutico
2.
Biomolecules ; 14(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38672427

RESUMEN

Cholesterol is an essential molecule of life, and its synthesis can be inhibited by both genetic and nongenetic mechanisms. Hundreds of chemicals that we are exposed to in our daily lives can alter sterol biosynthesis. These also encompass various classes of FDA-approved medications, including (but not limited to) commonly used antipsychotic, antidepressant, antifungal, and cardiovascular medications. These medications can interfere with various enzymes of the post-lanosterol biosynthetic pathway, giving rise to complex biochemical changes throughout the body. The consequences of these short- and long-term homeostatic disruptions are mostly unknown. We performed a comprehensive review of the literature and built a catalogue of chemical agents capable of inhibiting post-lanosterol biosynthesis. This process identified significant gaps in existing knowledge, which fall into two main areas: mechanisms by which sterol biosynthesis is altered and consequences that arise from the inhibitions of the different steps in the sterol biosynthesis pathway. The outcome of our review also reinforced that sterol inhibition is an often-overlooked mechanism that can result in adverse consequences and that there is a need to develop new safety guidelines for the use of (novel and already approved) medications with sterol biosynthesis inhibiting side effects, especially during pregnancy.


Asunto(s)
Esteroles , Humanos , Esteroles/biosíntesis , Esteroles/metabolismo , Animales , Colesterol/biosíntesis , Colesterol/metabolismo , Vías Biosintéticas/efectos de los fármacos , Lanosterol/metabolismo
3.
Pharmaceutics ; 16(1)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38258111

RESUMEN

The administration of therapeutics to peripheral nerve tissue is challenging due to the complexities of peripheral neuroanatomy and the limitations imposed by the blood-nerve barrier (BNB). Therefore, there is a pressing need to enhance delivery effectiveness and implement targeted delivery methods. Recently, erythrocyte-derived exosomes (Exos) have gained widespread attention as biocompatible vehicles for therapeutics in clinical applications. However, engineering targeted Exos for the peripheral nervous system (PNS) is still challenging. This study aims to develop a targeted Exo delivery system specifically designed for presynaptic terminals of peripheral nerve tissue. The clostridium neurotoxin, tetanus toxin-C fragment (TTC), was tethered to the surface of red blood cell (RBC)-derived Exos via a facile and efficient bio-orthogonal click chemistry method without a catalyst. Additionally, Cyanine5 (Cy5), a reactive fluorescent tag, was also conjugated to track Exo movement in both in vitro and in vivo models. Subsequently, Neuro-2a, a mouse neuronal cell line, was treated with dye-labeled Exos with/without TTC in vitro, and the results indicated that TTC-Exos exhibited more efficient accumulation along the soma and axonal circumference, compared to their unmodified counterparts. Further investigation, using a mouse model, revealed that within 72 h of intramuscular administration, engineered TTC-Exos were successfully transported into the neuromuscular junction and sciatic nerve tissues. These results indicated that TTC played a crucial role in the Exo delivery system, improving the affinity to peripheral nerves. These promising results underscore the potential of using targeted Exo carriers to deliver therapeutics for treating peripheral neuropathies.

4.
Neuropediatrics ; 55(1): 23-31, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37871611

RESUMEN

BACKGROUND: Neonatal hypoxic-ischemic brain injury (HIBI) results from disruptions to blood supply and oxygen in the perinatal brain. The goal of this study was to measure brain sterol metabolites and plasma oxysterols after injury in a neonatal HIBI mouse model to assess for potential therapeutic targets in the brain biochemistry as well as potential circulating diagnostic biomarkers. METHODS: Postnatal day 9 CD1-IGS mouse pups were randomized to HIBI induced by carotid artery ligation followed by 30 minutes at 8% oxygen or to sham surgery and normoxia. Brain tissue was collected for sterol analysis by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Plasma was collected for oxysterol analysis by LC-MS/MS. RESULTS: There were minimal changes in brain sterol concentrations in the first 72 hours after HIBI. In severely injured brains, there was a significant increase in desmosterol, 7-DHC, 8-DHC, and cholesterol 24 hours after injury in the ipsilateral tissue. Lanosterol, 24-dehydrolathosterol, and 14-dehydrozymostenol decreased in plasma 24 hours after injury. Severe neonatal HIBI was associated with increased cholesterol and sterol precursors in the cortex at 24 hours after injury. CONCLUSIONS: Differences in plasma oxysterols were seen at 24 hours but were not present at 30 minutes after injury, suggesting that these sterol intermediates would be of little value as early diagnostic biomarkers.


Asunto(s)
Hipoxia-Isquemia Encefálica , Oxiesteroles , Animales , Ratones , Animales Recién Nacidos , Biomarcadores/metabolismo , Encéfalo , Colesterol/metabolismo , Colesterol/farmacología , Colesterol/uso terapéutico , Cromatografía Liquida , Hipoxia-Isquemia Encefálica/terapia , Oxígeno/metabolismo , Oxígeno/farmacología , Oxígeno/uso terapéutico , Oxiesteroles/metabolismo , Oxiesteroles/farmacología , Oxiesteroles/uso terapéutico , Espectrometría de Masas en Tándem , Modelos Animales de Enfermedad , Distribución Aleatoria
5.
Biomolecules ; 13(9)2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37759721

RESUMEN

The concurrent use of several medications is a common practice in the treatment of complex psychiatric conditions. One such commonly used combination is aripiprazole (ARI), an antipsychotic, and trazodone (TRZ), an antidepressant. In addition to their effects on dopamine and serotonin systems, both of these compounds are inhibitors of the 7-dehydrocholesterol reductase (DHCR7) enzyme. To evaluate the systemic and nervous system distribution of ARI and TRZ and their effects on cholesterol biosynthesis, adult mice were treated with both ARI and TRZ for 21 days. The parent drugs, their metabolites, and sterols were analyzed in the brain and various organs of mice using LC-MS/MS. The analyses revealed that ARI, TRZ, and their metabolites were readily detectable in the brain and organs, leading to changes in the sterol profile. The levels of medications, their metabolites, and sterols differed across tissues with notable sex differences. Female mice showed higher turnover of ARI and more cholesterol clearance in the brain, with several post-lanosterol intermediates significantly altered. In addition to interfering with sterol biosynthesis, ARI and TRZ exposure led to decreased ionized calcium-binding adaptor molecule 1 (IBA1) and increased DHCR7 protein expression in the cortex. Changes in sterol profile have been also identified in the spleen, liver, and serum, underscoring the systemic effect of ARI and TRZ on sterol biosynthesis. Long-term use of concurrent ARI and TRZ warrants further studies to fully evaluate the lasting consequences of altered sterol biosynthesis on the whole body.


Asunto(s)
Fitosteroles , Trazodona , Humanos , Femenino , Masculino , Ratones , Animales , Aripiprazol , Trazodona/farmacología , Cromatografía Liquida , Polifarmacia , Espectrometría de Masas en Tándem , Colesterol , Esteroles , Encéfalo
6.
Nutrients ; 15(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37299515

RESUMEN

Vitamin A (retinol) is essential for normal fetal development, but the recommendation for maternal dietary intake (Retinol Activity Equivalent, RAE) does not differ for singleton vs. twin pregnancy, despite the limited evaluation of retinol status. Therefore, this study aimed to evaluate plasma retinol concentrations and deficiency status in mother-infant sets from singleton vs. twin pregnancies as well as maternal RAE intake. A total of 21 mother-infant sets were included (14 singleton, 7 twin). The HPLC and LC-MS/HS evaluated the plasma retinol concentration, and data were analyzed using the Mann-Whitney U test. Plasma retinol was significantly lower in twin vs. singleton pregnancies in both maternal (192.2 vs. 312.1 vs. mcg/L, p = 0.002) and umbilical cord (UC) samples (102.5 vs. 154.4 vs. mcg/L, p = 0.002). The prevalence of serum-defined vitamin A deficiency (VAD) <200.6 mcg/L was higher in twins vs. singletons for both maternal (57% vs. 7%, p = 0.031) and UC samples (100% vs. 0%, p < 0.001), despite a similar RAE intake (2178 vs. 1862 mcg/day, p = 0.603). Twin pregnancies demonstrated a higher likelihood of vitamin A deficiency in mothers, with an odds ratio of 17.3 (95% CI: 1.4 to 216.6). This study suggests twin pregnancy may be associated with VAD deficiency. Further research is needed to determine optimal maternal dietary recommendations during twin gestation.


Asunto(s)
Deficiencia de Vitamina A , Vitamina A , Vitamina A/sangre , Deficiencia de Vitamina A/sangre , Deficiencia de Vitamina A/epidemiología , Humanos , Femenino , Embarazo , Madres , Embarazo Gemelar , Ingestión de Alimentos , Recién Nacido , Lactante , Salud Materna , Salud del Lactante
7.
Nutrients ; 15(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36839158

RESUMEN

The prenatal period is critical for auditory development; thus, prenatal influences on auditory development may significantly impact long-term hearing ability. While previous studies identified a protective effect of carotenoids on adult hearing, the impact of these nutrients on hearing outcomes in neonates is not well understood. The purpose of this study is to investigate the relationship between maternal and umbilical cord plasma retinol and carotenoid concentrations and abnormal newborn hearing screen (NHS) results. Mother-infant dyads (n = 546) were enrolled at delivery. Plasma samples were analyzed using HPLC and LC-MS/MS. NHS results were obtained from medical records. Statistical analysis utilized Mann-Whitney U tests and logistic regression models, with p ≤ 0.05 considered statistically significant. Abnormal NHS results were observed in 8.5% of infants. Higher median cord retinol (187.4 vs. 162.2 µg/L, p = 0.01), maternal trans-ß-carotene (206.1 vs. 149.4 µg/L, p = 0.02), maternal cis-ß-carotene (15.9 vs. 11.2 µg/L, p = 0.02), and cord trans-ß-carotene (15.5 vs. 8.0 µg/L, p = 0.04) were associated with abnormal NHS. Significant associations between natural log-transformed retinol and ß-carotene concentrations and abnormal NHS results remained after adjustment for smoking status, maternal age, and corrected gestational age. Further studies should investigate if congenital metabolic deficiencies, pesticide contamination of carotenoid-rich foods, maternal hypothyroidism, or other variables mediate this relationship.


Asunto(s)
Vitamina A , beta Caroteno , Embarazo , Recién Nacido , Lactante , Adulto , Femenino , Humanos , Vitaminas , Estado Nutricional , Cromatografía Liquida , Espectrometría de Masas en Tándem , Carotenoides
8.
Glia ; 71(5): 1176-1196, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36594399

RESUMEN

Fragile X syndrome (FXS), the most prevalent heritable form of intellectual disability, is caused by the transcriptional silencing of the FMR1 gene. While neuronal contribution to FXS has been extensively studied in both animal and human-based models of FXS, the roles of astrocytes, a type of glial cells in the brain, are largely unknown. Here, we generated a human-based FXS model via differentiation of astrocytes from human-induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) and characterized their development, function, and proteomic profiles. We identified shortened cell cycle, enhanced Ca2+ signaling, impaired sterol biosynthesis, and pervasive alterations in the proteome of FXS astrocytes. Our work identified astrocytic impairments that could contribute to the pathogenesis of FXS and highlight astrocytes as a novel therapeutic target for FXS treatment.


Asunto(s)
Síndrome del Cromosoma X Frágil , Animales , Humanos , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Astrocitos/metabolismo , Proteómica , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Ciclo Celular , Colesterol/metabolismo
9.
ACS Pharmacol Transl Sci ; 5(11): 1086-1096, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36407960

RESUMEN

Cholesterol is ubiquitous in cells; it plays a critical role in membrane structure and transport as well as in intracellular trafficking processes. There are suggestions that cholesterol metabolism is linked to innate immunity with inhibitors of DHCR7, the last enzyme in the cholesterol pathway, suggested to have potential as viral therapeutics nearly a decade ago. In fact, there are a number of highly prescribed pharmaceuticals that are off-target inhibitors of DHCR7, causing increased cellular levels of 7-dehydrodesmosterol (7-DHD) and 7-dehydrocholesterol (7-DHC). We report here dose-response studies of six such inhibitors on late-stage cholesterol biosynthesis in Neuro2a cells as well as their effect on infection of vesicular stomatitis virus (VSV). Four of the test compounds are FDA-approved drugs (cariprazine, trazodone, metoprolol, and tamoxifen), one (ifenprodil) has been the object of a recent Phase 2b COVID trial, and one (AY9944) is an experimental compound that has seen extensive use as a DHCR7 inhibitor. The three FDA-approved drugs inhibit replication of a GFP-tagged VSV with efficacies that mirror their effect on DHCR7. Ifenprodil and AY9944 have complex inhibitory profiles, acting on both DHCR7 and DHCR14, while tamoxifen does not inhibit DHCR7 and is toxic to Neuro2a at concentrations where it inhibits the Δ7-Δ8 isomerase of the cholesterol pathway. VSV itself affects the sterol profile in Neuro2a cells, showing a dose-response increase of dehydrolathosterol and lathosterol, the substrates for DHCR7, with a corresponding decrease in desmosterol and cholesterol. 7-DHD and 7-DHC are orders of magnitude more vulnerable to free radical chain oxidation than other sterols as well as polyunsaturated fatty esters, and the effect of these sterols on viral infection is likely a reflection of this fact of Nature.

10.
Biomolecules ; 12(10)2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36291744

RESUMEN

Polypharmacy is commonly used to treat psychiatric disorders. These combinations often include drugs with sterol biosynthesis inhibiting side effects, including the antipsychotic aripiprazole (ARI), and antidepressant trazodone (TRZ). As the effects of psychotropic medications are poorly understood across the various tissue types to date, we investigated the effects of ARI, TRZ, and ARI + TRZ polypharmacy on the post-lanosterol biosynthesis in three cell lines (Neuro2a, HepG2, and human dermal fibroblasts) and seven peripheral tissues of an adult mouse model. We found that both ARI and TRZ strongly interfere with the function of 7-dehydrocholesterol reductase enzyme (DHCR7) and lead to robust elevation in 7-dehydrocholesterol levels (7-DHC) and reduction in desmosterol (DES) across all cell lines and somatic tissues. ARI + TRZ co-administration resulted in summative or synergistic effects across the utilized in vitro and in vivo models. These findings suggest that at least some of the side effects of ARI and TRZ are not receptor mediated but arise from inhibiting DHCR7 enzyme activity. We propose that interference with sterol biosynthesis, particularly in the case of simultaneous utilization of medications with such side effects, can potentially interfere with functioning or development of multiple organ systems, warranting further investigation.


Asunto(s)
Antipsicóticos , Trazodona , Adulto , Ratones , Humanos , Animales , Aripiprazol , Desmosterol , Antipsicóticos/farmacología , Lanosterol , Antidepresivos
11.
J Neurosci Methods ; 381: 109704, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36070817

RESUMEN

BACKGROUND: Somatostatin (SST) and cholecystokinin (CCK) are peptide hormones that regulate the endocrine system, cell proliferation and neurotransmission. NEW METHOD: We utilized the novel Easi-CRISPR system to generate two knock-in mouse strains with Cre recombinase in SST- and CCK-expressing cells and validated their utility in the developing and adult brain tissues. RESULTS: The full nomenclature for the newly generated strains are C57BL/6-Sstem1(P2A-iCre-T2A-mCherry)Mirn and C57BL/6-Cckem1(iCre-T2A-mCherry-P2A)Mirn. For the Sst locus, a P2A-iCre-T2A-mCherry cassette was inserted immediately upstream of the stop codon (C terminus fusion). For the Cck locus, iCre-P2A-mCherry-T2A cassette was inserted at the start codon (N terminus fusion). Knock-in mice were generated using the Easi-CRISPR method. Developmental and adult SST and CCK expressions were preserved and showed an appropriate expression pattern in both models, with an active fluorescent tag in both animal lines. COMPARISON WITH EXISTING METHODS: Knock-in mouse models to study cell types that produce these critically important molecules are limited to date. The knock-in mice we generated can be used as reporters to study development, physiology, or pathophysiology of SST and CCK expressing cells - without interference with native expression of SST and CCK. In addition, they can be used as Cre driver models to conditionally delete floxed genes in SST and CCK expressing cells across various tissues. CONCLUSIONS: These two mouse models serve as valuable tools for in vitro and in vivo research studies related to SST and CCK biology across the lifespan and across different tissue types.


Asunto(s)
Colecistoquinina , Somatostatina , Animales , Colecistoquinina/genética , Codón Iniciador , Codón de Terminación , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Somatostatina/genética
12.
J Lipid Res ; 63(8): 100249, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35839864

RESUMEN

Polypharmacy, or the simultaneous use of multiple drugs to treat a single patient, is a common practice in psychiatry. Unfortunately, data on the health effects of commonly used combinations of medications are very limited. In this study, we therefore investigated the effects and interactions between two commonly prescribed psychotropic medications with sterol inhibiting side effects, trazodone (TRZ), an antidepressant, and aripiprazole (ARI), an antipsychotic. In vitro cell culture experiments revealed that both medications alone disrupted neuronal and astroglial sterol biosynthesis in dose-dependent manners. Furthermore, when ARI and TRZ were combined, exposure resulted in an additive 7-dehydrocholesterol (7-DHC) increase, as well as desmosterol (DES) and cholesterol decreases in both cell types. In adult mice, at baseline, we found that the three investigated sterols showed significant differences in distribution across the eight assessed brain regions. Furthermore, experimental mice treated with ARI or TRZ, or a combination of both medications for 8 days, showed strong sterol disruption across all brain regions. We show ARI or TRZ alone elevated 7-DHC and decreased DES levels in all brain regions, but with regional differences. However, the combined utilization of these two medications for 8 days did not lead to additive changes in sterol disturbances. Based on the complex roles of 7-DHC derived oxysterols, we conclude that individual and potentially simultaneous use of medications with sterol biosynthesis-inhibiting properties might have undesired side effects on the adult brain, with as yet unknown long-term consequences on mental or physical health.


Asunto(s)
Antipsicóticos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Trazodona , Animales , Antidepresivos , Aripiprazol , Encéfalo , Ratones , Esteroles
13.
Metabolites ; 12(5)2022 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-35629971

RESUMEN

Hypoxic-ischemic brain injury (HIBI) leads to depletion of ATP, mitochondrial dysfunction, and enhanced oxidant formation. Measurement of acylcarnitines may provide insight into mitochondrial dysfunction. Plasma acylcarnitine levels are altered in neonates after an HIBI, but individual acylcarnitine levels in the brain have not been evaluated. Additionally, it is unknown if plasma acylcarnitines reflect brain acylcarnitine changes. In this study, postnatal day 9 CD1 mouse pups were randomized to HIBI induced by carotid artery ligation, followed by 30 min at 8% oxygen, or to sham surgery and normoxia, with subgroups for tissue collection at 30 min, 24 h, or 72 h after injury (12 animals/group). Plasma, liver, muscle, and brain (dissected into the cortex, cerebellum, and striatum/thalamus) tissues were collected for acylcarnitine analysis by LC-MS. At 30 min after HIBI, acylcarnitine levels were significantly increased, but the differences resolved by 24 h. Palmitoylcarnitine was increased in the cortex, muscle, and plasma, and stearoylcarnitine in the cortex, striatum/thalamus, and cerebellum. Other acylcarnitines were elevated only in the muscle and plasma. In conclusion, although plasma acylcarnitine results in this study mimic those seen previously in humans, our data suggest that the plasma acylcarnitine profile was more reflective of muscle changes than brain changes. Acylcarnitine metabolism may be a target for therapeutic intervention after neonatal HIBI, though the lack of change after 30 min suggests a limited therapeutic window.

14.
Metabolites ; 12(1)2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35050168

RESUMEN

Pancreatic cancer (PC) is characterized by metabolic deregulations that often manifest as deviations in metabolite levels and aberrations in their corresponding metabolic genes across the clinical specimens and preclinical PC models. Cholesterol is one of the critical metabolites supporting PC, synthesized or acquired by PC cells. Nevertheless, the significance of the de novo cholesterol synthesis pathway has been controversial in PC, indicating the need to reassess this pathway in PC. We utilized preclinical models and clinical specimens of PC patients and cell lines and utilized mass spectrometry-based sterol analysis. Further, we also performed in silico analysis to corroborate the significance of de novo cholesterol synthesis pathway in PC. Our results demonstrated alteration in free sterol levels, including free cholesterol, across in vitro, in vivo, and clinical specimens of PC. Especially, our sterol analyses established consistent alterations in free cholesterol across the different PC models. Overall, this study demonstrates the significance and consistency in deviation of cholesterol synthesis pathway in PC while showing the aberrations in sterol metabolite intermediates and the related genes using preclinical models, in silico platforms, and the clinical specimens.

15.
Mol Psychiatry ; 27(1): 490-501, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33820938

RESUMEN

Cholesterol is essential for normal brain function and development. Genetic disruptions of sterol biosynthesis result in intellectual and developmental disabilities. Developing neurons synthesize their own cholesterol, and disruption of this process can occur by both genetic and chemical mechanisms. Many commonly prescribed medications interfere with sterol biosynthesis, including haloperidol, aripiprazole, cariprazine, fluoxetine, trazodone and amiodarone. When used during pregnancy, these compounds might have detrimental effects on the developing brain of the offspring. In particular, inhibition of dehydrocholesterol-reductase 7 (DHCR7), the last enzyme in the biosynthesis pathway, results in accumulation of the immediate cholesterol precursor, 7-dehydrocholesterol (7-DHC). 7-DHC is highly unstable, giving rise to toxic oxysterols; this is particularly pronounced in a mouse model when both the mother and the offspring carry the Dhcr7+/- genotype. Studies of human dermal fibroblasts from individuals who carry DCHR7+/- single allele mutations suggest that the same gene*medication interaction also occurs in humans. The public health relevance of these findings is high, as DHCR7-inhibitors can be considered teratogens, and are commonly used by pregnant women. In addition, sterol biosynthesis inhibiting medications should be used with caution in individuals with mutations in sterol biosynthesis genes. In an age of precision medicine, further research in this area could open opportunities to improve patient and fetal/infant safety by tailoring medication prescriptions according to patient genotype and life stage.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Animales , Aripiprazol/metabolismo , Encéfalo/metabolismo , Colesterol , Femenino , Humanos , Ratones , Neuronas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Embarazo
16.
Antioxidants (Basel) ; 10(9)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34573041

RESUMEN

Carotenoids are antioxidant nutrients with the potential to provide protection against oxidative stress. Plasma carotenoid concentrations are lower in newborn infants compared to their mothers; however, limited information is available regarding how concentrations differ by gestational age. The objective of this research is to assess maternal and umbilical cord plasma carotenoid concentrations and maternal-umbilical cord plasma ratios across five groups of birth gestational age. Mother-infant dyads were enrolled at delivery for collection of maternal and umbilical cord blood. Plasma carotenoids were analyzed by HPLC and LC-MS/MS. Birth gestational age was categorized into five groups, and the Kruskal-Wallis test compared carotenoid concentrations and maternal-umbilical cord plasma ratios between these groups. A p-value of < 0.05 was considered statistically significant. 370 mother-infant dyads were included, with most infants delivered at early term (20.3%) or term (64.6%). Though maternal plasma concentrations increased with birth gestational age, we observed less variability in umbilical cord plasma concentrations, thus the maternal-umbilical cord plasma ratio also increased with birth CGA groups for lutein + zeaxanthin (p = 0.008), ß-cryptoxanthin (p = 0.027), α-carotene (p = 0.030); ß-carotene approached significance (p = 0.056). Additional research is needed to determine if carotenoid concentrations were physiologic to varying gestational ages or if they were impacted by factors associated with preterm birth.

17.
Biomolecules ; 11(8)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34439893

RESUMEN

Smith-Lemli-Opitz syndrome (SLOS) is a severe monogenic disorder resulting in low cholesterol and high 7-dehydrocholesterol (7-DHC) levels. 7-DHC-derived oxysterols likely contribute to disease pathophysiology, and thus antioxidant treatment might be beneficial because of high oxidative stress. In a three-year prospective study, we investigated the effects of vitamin E supplementation in six SLOS patients already receiving dietary cholesterol treatment. Plasma vitamin A and E concentrations were determined by the high-performance liquid chromatography (HPLC) method. At baseline, plasma 7-DHC, 8-dehydrocholesterol (8-DHC) and cholesterol levels were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. The clinical effect of the supplementation was assessed by performing structured parental interviews. At baseline, patients were characterized by low or low-normal plasma vitamin E concentrations (7.19-15.68 µmol/L), while vitamin A concentrations were found to be normal or high (1.26-2.68 µmol/L). Vitamin E supplementation resulted in correction or significant elevation of plasma vitamin E concentration in all patients. We observed reduced aggression, self-injury, irritability, hyperactivity, attention deficit, repetitive behavior, sleep disturbance, skin photosensitivity and/or eczema in 3/6 patients, with notable individual variability. Clinical response to therapy was associated with a low baseline 7-DHC + 8-DHC/cholesterol ratio (0.2-0.4). We suggest that determination of vitamin E status is important in SLOS patients. Supplementation of vitamin E should be considered and might be beneficial.


Asunto(s)
Suplementos Dietéticos , Síndrome de Smith-Lemli-Opitz/sangre , Síndrome de Smith-Lemli-Opitz/terapia , Vitamina E/uso terapéutico , Adolescente , Alelos , Antioxidantes/metabolismo , Conducta , Niño , Preescolar , Colesterol en la Dieta/metabolismo , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Deshidrocolesteroles/sangre , Femenino , Humanos , Lípidos/química , Masculino , Estrés Oxidativo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxiesteroles/metabolismo , Estudios Prospectivos , Esteroles/química , Espectrometría de Masas en Tándem , Vitamina A/metabolismo , Vitamina E/metabolismo , Adulto Joven
18.
ACS Pharmacol Transl Sci ; 4(2): 848-857, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33860207

RESUMEN

Sterol biosynthesis is a critical homeostatic mechanism of the body. Sterol biosynthesis begins during early embryonic life and continues throughout life. Many commonly used medications, prescribed >200 million times in the United States annually, have a sterol biosynthesis inhibition side effect. Using our high-throughput LC-MS/MS method, we assessed the levels of post-lanosterol sterol intermediates (lanosterol, desmosterol, and 7-dehydrocholesterol (7-DHC)) and cholesterol in 1312 deidentified serum samples from pregnant women. 302 samples showing elevated 7-DHC were analyzed for the presence of 14 medications known to inhibit the 7-dehydrocholesterol reductase enzyme (DHCR7) and increase 7-DHC. Of the 302 samples showing 7-DHC elevation, 43 had detectable levels of prescription medications with a DHCR7-inhibiting side effect. Taking more than one 7-DHC-elevating medication in specific combinations (polypharmacy) might exacerbate the effect on 7-DHC levels in pregnant women, suggesting a potentially additive or synergistic effect. As 7-DHC and 7-DHC-derived oxysterols are toxic, and as DHCR7-inhibiting medications are considered teratogens, our findings raise potential concerns regarding the use of prescription medication with a DHCR7-inhibiting side effect during pregnancy. The use of prescription medications during pregnancy is sometimes unavoidable, but choosing a medication without a DHCR7-inhibiting side effect might lead to a heathier pregnancy and prevent putatively adverse outcomes for the developing offspring.

19.
Anal Chem ; 93(11): 4932-4943, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33687199

RESUMEN

Despite being a critical molecule in the brain, mass spectrometry imaging (MSI) of cholesterol has been under-reported compared to other lipids due to the difficulty in ionizing the sterol molecule. In the present work, we have employed an on-tissue enzyme-assisted derivatization strategy to improve detection of cholesterol in brain tissue sections. We report distribution and levels of cholesterol across specific structures of the mouse brain, in a model of Niemann-Pick type C1 disease, and during brain development. MSI revealed that in the adult mouse, cholesterol is the highest in the pons and medulla and how its distribution changes during development. Cholesterol was significantly reduced in the corpus callosum and other brain regions in the Npc1 null mouse, confirming hypomyelination at the molecular level. Our study demonstrates the potential of MSI to the study of sterols in neuroscience.


Asunto(s)
Colesterol , Enfermedad de Niemann-Pick Tipo C , Animales , Encéfalo/diagnóstico por imagen , Espectrometría de Masas , Ratones , Enfermedad de Niemann-Pick Tipo C/diagnóstico por imagen , Esteroles
20.
ACS Omega ; 6(8): 5490-5498, 2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33681590

RESUMEN

The last step of cholesterol biosynthesis is the conversion of 7-dehydrocholesterol (7-DHC) into cholesterol, a reaction catalyzed by dehydrocholesterol reductase 7 (DHCR7). Investigation of the effect of Dhcr7 single-allele mutations on the metabolism of aripiprazole (ARI) and cariprazine (CAR) in maternally exposed transgenic pups revealed that ARI, CAR, and their active metabolites were decreased in the liver and brain of Dhcr7 +/- . This difference in the drug and metabolite levels resulted in an increased turnover of ARI and CAR in tissues from Dhcr7 +/- animals, indicating an enhanced metabolism, which was at least partially due to increased levels of Cyp2d6 in the liver of Dhcr7 +/- mice. Finally, experiments with both WT and DHCR7 +/- human fibroblasts revealed lower drug levels in DHCR7 +/- heterozygous cells. Our findings have potential clinical implications, as DHCR7 heterozygosity is present in 1-3% in the human population, and these individuals might have reduced therapeutic levels of Cyp2d6-metabolized medications and are putatively more susceptible to unwanted side effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...